

แบบจำลองการคาดการณ์ผู้โดยสารระบบราง (Rail passenger demand forecasting models) ในประเทศญี่ปุ่น

กิจกรรมถ่ายทอดความรู้ ครั้งที่ 1/2564

โครงการเพื่อพัฒนาแบบจำลองการคาดการณ์ความต้องการเดินทางด้วยระบบรางและการพัฒนาโครงข่ายระบบขนส่ง มวลชนทางรางในเขตกรุงเทพและปริมณฑล (พื้นที่ต่อเนื่อง) ระยะที่ 2 (M-MAP 2) 🗾 🥅 🥅 🥅

วันพุทธที่ 24 พฤศจิกายน 2564

The Project for Enhancing Capacity of Formulation of the Second Mass Rapid Transit Master Plan in Bangkok Metropolitan Region (M-MAP2)

Why the Demand Forecast Model Specialized for Railways is Needed? Examples from Japanese Railway Master Plan

JICA Expert Team

- Tokyo Metropolitan Area (TMA) demand forecast model
- Roles of demand forecast model
- Why the railway demand forecast model is needed?
- Development History
- Demand forecast and policy evaluation
- Demand forecast and investment priority evaluation
- Detail information on demand forecast model in CTPP No.198

TMA Railway Demand Forecast Model

• Developed by The Council of Transport Policy for TMA Railway Master Plan

An independent council under MLIT

Secretariat: Railway Bureau and Kanto Regional Bureau (MLIT)

• Railway Master Plan Model for Tokyo Metropolitan Area

Tokyo, Kanagawa, Saitama, Chiba, and a part of Ibaraki Pref.

Study area approx. 50km radius from CBD

Population of 30 Million

- 4-Step Model
- Latest Model Developed in 2016 Which we will cover this model today

Roles of Demand Forecast Model

In CTPP No.18 (2000 TMA Railway Master Plan), the demand forecast result was utilized in several aspect, such as

• New line investment priority setting

Demand forecast result will be one of the criteria in multi-criteria analysis for priority setting

• Public policy responsive analysis

Five major policies, namely, congestion reduction, travel time saving, reinforcing urban structures, airports & HSR stations access improvement, and universal design & seamless transfer, were analyzed based on the indices obtained from the demand forecast model.

• Subsidy Analysis

Analysis on who (local govt, central govt, other public organizations, etc.) benefit from the railway service, and how much the benefit it is. This will help to determine which stakeholder should share the investment cost based on their expected benefit from railway service.

Why the Railway Demand Forecast Model is Needed?

- 1. To evaluate the railway policies and goals
- 2. To provide a precise passenger demand forecast, <u>specifically for railway</u> <u>passenger</u>
 - below items are examples of issue taken into considered in Tokyo model
 - Zone with high competition between each railway lines should be divided in more detail, while zone with low railway demand could be aggregated.
 - Railway station access model is introduced
 - Reconstruction with the difference of passenger demand in each railway section between estimated value and the actual data within 10% difference.
- 3. To provide a state-of-the-art model based on the latest result from academic researches

	Analysis	Features of Model
CUTP No.15 (1972)	Demand forecasting and other related	 First introduction of 4-Step Model
Target year 1985	analyses	 40 analysis zones
CTPP No.7 (1985)	Evaluation of the congestion rate in the	Analysis of morning peak-hours by consider only working
Target year 2000	most congested section	and schooling commuter
	S O MP	 Introduction of Disaggregate Travel Demand Model
	A A A A A A A A A A A A A A A A A A A	 658 analysis zones
CTPP No.18 (2000)	 Congestion alleviation, time savings 	 Include daytime traffic analysis (not only peak hour)
Target year 2015	analysis	for profitability estimation
	 Evaluation of railway service 	 Introduction of congestion parameter
2 2 9 9 9 S	profitability	 Introduction of Probit Model
	 Cost-effectiveness analysis (CEA) 	 Introduction of Airport and HSR access model
2/ 32/ GL 1/2 - 1/9/	 Service continuity 	 1,812 analysis zones
CTPP No.198 (2016)	191795 V	 Increase the group of trip purpose
Target year 2030		 Analysis by age groups
5 a 5 3 Millor angla 324		due to the effect of population aging
Ur u Ser MANOU		 2,843 analysis zones

CTPP No.18: Evaluation by Policy

Ranges of KPIs	were designed for policy evaluation	n in Tokyo Railway Master Plan	in 2000	OLJ INE
	Goal	КРІ	Objects	W/O PRJ With PRJ
- 4100 - 27 57	Goal 1	Congestion ratio	Most congested section	195%
M THREAT	Alleviate in-train congestion	Congestion length	Over-congested sections (Low / Med. / High)	
	Goal 2	Time saving (total)	Entire network	-5,000H 100% 99.95%
	Shorten travel time	Time saving (key sections)	Key sections	45 -10min 35 min min
	Goal 3 Beinforce urban structures &	Total access/egress time	To/from nearest station	-5,000H 100% 99.95%
	functions	Total time /# of transfer	From sub-center to center From regional core to CBD	55 -15min 30 0 min 3 min 0
	Goal 4	Total time /# of transfer	Whole passengers	-1500H 100% 100)-5000T 88% 85
	Speed Rail stations	Time /# of transfer	From key locations	65 -15min 52 1 min 2 min 1
	Goal 5 Promoto universal design & seamless	Total number of transfer	Entire network	-45,000T 100% 99.7%
	service	Time /# of transfer	Key sections	38 -3min min 1 35 0 min 0

Goal 1. Alleviate in-train congestion

In-train congestion can be evaluated with average congestion ratio & length of over-congested sections.

Goal 2. Shorten travel time / Goal 3. Reinforce urban structures & functions

Travel time & no. of transfer among CBDs and periphery's cores can describe strength of urban structures & functions. (In case of BMA: Bangkok CBD – Bang Khae – Min Buri – Nonthaburi – Rangsit – Samut Prakan)

Goal 4. Improve access to airports & High Speed Rail stations

Proposals were evaluated consistently with the evaluation criteria, thus providing accountability & objectivity.

Study R	Route / Length Demand Accomplishment of Policy Goals / Socio-Economic Impact					Fina	ncial Vial	bility	of S					
oute	Section		d (Traffic Density)	Decongestion	Seamless Transfer	Travel Time	Urban Structure	Access to HSR/Airport	Relevance/ Impact to Other Lines	Benefit / Cost	Net Cashflow	Rate of Subsidy	Investment Cost	aturity Project Formulation
1	А	3.6	319	Good	Avg.	Good	Good	Avg.	xx	6.7	5.4	0%	628	Operating body
2	B	8.5	95	Poor	Poor	Poor	Poor	Poor	хх	1.0	2.4	80%	3,236	Willingness of LGU
3	C	11.4	91	Avg.	Poor	Good	Poor	Poor	xx	2.3	2.7	50%	2,282	Financing capacity
4	DS	6.6	75	Avg.	Poor	Good	Avg.	Poor	XX	3.0	1.7	80%	1,351	Etc.
5	E	12.3	111	Good	Good	Avg.	Avg.	Avg.	xx	2.8	2.6	60%	8,363	
96	5° 10													

Demand Forecast Model in CTPP No.198: Overall Flow

Trip Purpose					
1) Home to Work		6) Work - Business			
2) Home to School		7) Work to	Home		
3) Home to Private		8) School	to Home		
4) Non Home-Based Private	9911	9) Private to Home			
5) Home to Business	6	10) Business to Home			
Time Period					
AM Peak (purpose 1-2) Off Pe		ourpose 3-6)	PM Peak (purpose 7-10)		
Age Grou	up (for	Home to W	′ork*)		
Production Model	Eve	Every 5 years, until 85+			
Distribution Model		Female: 15-34, 35-64, 65-74, 75+ Male: -64, 65-74, 75+			
Modal Split Model					
Route Assignment Model		-64, 65+ 			
	•		*For other trip purposes, see slide 6		

Major Data Input

- 2010 National Census (for Production)
- 2008 Person-Trip Survey (for Distribution and Modal Split)
- 2010 Metropolitan Transport Census (for Route Assignment)
- Other railway passenger statistics for reconstruction and calibration

Trip Purpose						
1) Home to Work		6) Work - Business				
2) Home to School		7) Work to	Home			
3) Home to Private		8) School	to Home			
4) Non Home-Based Priv	ate	9) Private	to Home			
5) Home to Business		10) Busin	ess to Home			
Time Period						
AM Peak (purpose 1-2) O	ff Peak (purpose 3-6)	PM Peak (purpose 7-10)			
Age G	Age Group (for Home to Work*)					
Production Model	Eve	Every 5 years, until 85+				
Distribution Model	Fer Ma	Female: 15-34, 35-64, 65-74, 75+ Male: -64, 65-74, 75+				
Modal Split Model		04.05				
Route Assignment Model	-64	-64, 65+				
	*For other trip purposes, see slide o					
Major Data Input						
 2010 National Census (for Production) 2008 Person-Trip Survey (for Distribution and Modal Split) 2010 Metropolitan Transport Census (for Route Assignment) Other railway passenger statistics for reconstruction and calibration 						

Trip Rate Method

$$G_{ipa} = \alpha_{ipa} \cdot X_{ipa}$$

 $\alpha_{ipa} = \frac{g_{ipa}}{x_{ipa}}$

Where

 G_{ip} : Future trip generated from zone i for trip purpose p, age group a X_{ip} : Future population index from zone i for trip purpose p, age group a α_{ip} : Trip generation rate from zone i for trip purpose p, age group a g_{ip} : Current trip generated from zone i for trip purpose p, age group a x_{ip} : Current population index from zone i for trip purpose p, age group a Same applies with attraction, but with different population index

Population Index and Trip Rate by Trip Purpose

	Generation		Attraction	AP 21
	Population Index	Trip Rate	Population Index	Trip Rate
1) Home to Work	Number of workers	1.000	Number of employment	1.000
2) Home to School	Number of students	1.000	Number of school seats	1.000
3) Home to Private	Number of people who stay at home during the daytime*	0.716	Daytime population	0.265
4) Non Home-Based Private	Daytime population	0.237	Daytime population	0.237
5) Home to Business	Number of workers	0.075	Number of employment	0.075
6) Work - Business	Number of employment	0.194	Number of employment	0.194
7) Work to Home	Number of employment	0.465	Number of workers	0.466
8) School to Home	Number of school seats	0.713	Number of students	0.715
9) Private to Home	Daytime population	0.312	Nighttime population	0.312
10) Business to Home	Number of employment	0.076	Number of workers	0.076

*equals to = Nighttime pop. – No. of workers – No. of employment + No. of people WFH

Two steps in Distribution Model

- 1. Gravity Model
- Used as initial OD trip only on a specific on area, trip purpose, origin, or destination with expected land development
- 2. Growth Rate Model
- After distribute by Gravity Model on the specific ODs, apply growth rate for the rest based on future population data
- Most of the urban areas are already developed in TMA, so assume no large scale development between OD
- Finally, balance with Fratar Method until total generation = total attraction

Two steps in Distribution Model

- 1. Gravity Model
- Used as initial OD trip only on a specific on area, trip purpose, origin, or destination with expected land development

2. Growth Rate Model

- After distribute by Gravity Model on the specific ODs, apply growth rate for the rest based on future population data
- Most of the urban areas are already developed in TMA, so assume no large scale development between OD
- Finally, balance with Fratar Method until total generation = total attraction

Fine tune for policy evaluation related to land development

Gravity Model

T_{ijpa}

$$= (\kappa + \delta_0 \cdot d_0) \cdot G^{\alpha}_{ipa} \cdot A^{\beta}_{jpa} \cdot c^{(\gamma + \delta_0 \cdot d_0 + \sum_k \delta_k \cdot d_k)}_{ij}$$

Where

 T_{ij} : Future no. of trip from zone i travel to zone j A_j : Future Trip attracted to zone j c_{ij} : Generalized cost of trip from zone i to j δ_0, d_0 : CBD, sub-CBD parameter and dummy δ_k, d_k : kth distance parameter and dummy $\alpha, \beta, \gamma, \kappa$: other gravity model parameters

Note: CBD, sub-CBD and distance dummy may be excluded from some trip purpose and age group models

Model Variables

	Variables	Detail
	Generation	Trip generated, calculated from Generation Model (10,000 person)
9	Attraction	Trip attracted, calculated from Attraction Model (10,000 person)
J.	Generalized Cost	OD generalized cost calculated from Modal Split Model
5	<10 km Dummy	
	10-20 km Dummy	
	20-30 km Dummy	1 if <u>road distance</u> between OD is in dummy range, 0
	30-40 km Dummy	otherwise
	40-50 km Dummy	
	50-60 km Dummy	
	CBD, sub-CBD Dummy	1 if O or D zones (or both) are defined as CBD or sub- CBD, 0 otherwise

Note: use T_{ij} from Gravity Model if already specified by Gravity Model

Motorized – Non-Motorized Split

Main Model: Modal Split					
Motorized Modal Split	Model Variables				
	Variables	Detail			
$P_i = \frac{exp(V_i)}{\sum_{i=1}^{n} exp(V_i)}$	Travel Cost (Yen)	RAIL: rail fare BUS: bus fare CAR: VOC (fuel, maintenance) + toll fee			
$V_i = \sum_k (\theta_k \cdot X_{ik})$	Travel Time (Minute)	RAIL: boarding + transfer + waiting time BUS: boarding + waiting + access/egress to bus stop time CAR: driving + parking (both O&D) time			
Where	Vehicle Ownership (Veh/Person)	(CAR ONLY) Vehicle Ownership per capita (20-84 y.o.)			
P_i = Probability of selecting mode i V_i = Utility of selecting mode i	CBD Dummy	(CAR ONLY) 1 for <u>destination zone</u> in the municipality with car share less than 20%, 0 otherwise			
n = Number of transport mode, here = 3 (rail, bus, car) $\theta_k = k^{th}$ utility parameter	Station Access	(RAIL ONLY) Log-sum of the utility of every mode calculated railway station access model, calculated as sum of log-sum of access and egress			
<i>Aik</i> = K ^m utility variable of mode i	Short Trip Dummy	(CAR ONLY) 1 for OD with distance less than 5km, 0 otherwise			
	ASC	Alternative specific constant for each mode. Bus as a reference.			

		Hon	ne to Work,	Work to Hom	e	HtS, S	StH
Estimates		-64		- 65	j+	All age	
		parameter	t-value	parameter	t-value	parameter	t-value
Travel Cost (yen)	All	-0.00123	-10.4	-0.000940	-7.34	-0.00561	-13.1
Travel Time (min)	All	-0.0482	-18.2	-0.0389	-13.8	-0.0102	-2.13
Vehicle Ownership	CAR	1.13	7.23	2.45	12.9	0.972	3.35
CBD Dummy	CAR	-1.72	-21.3	-0.847	-8.57	-0.571	-2.05
Station Access	RAIL	0.446	33.6	0.504	24.0	0.148	4.93
Short Trip Dummy	CAR	0.665	6.13	0.530	4.33	2.18	6.87
ASC	BUS	-0.773	-7.65	0.248	1.98	4.28	14.0
	RAIL	2.82	21.8	2.73	17.0	4.80	14.8
Adjusted R ²	400	0.740)	0.54	5	0.97	75
Hit Ratio		90.3		79.9		93.8	
Travel Time VOT (yen/min)		39.3		41.3		1.8	1
NSCOUL	-	9,763	3	3,68	9	2,78	36

Main Model: Railway Route Assignment

Model Variables

	Variables 🖉	Detail
	Fare (Yen)	Total route fare from origin station to destination station
6	Boarding Time (Min)	Total boarding time from origin station to destination station
J.	Transfer Time, Horizontally (Min)	Time spent on walking horizontally while transferring the train
15 16 16	Transfer Time, Vertically (Min)	Time spent on moving vertically (elevator, escalator, etc.) while transferring the train
	Waiting Time (Min)	Total time waiting for train boarding, including the first ride. Assume as a half of headway.
	Congestion Index	Calculated from travel time and congestion rate, see below
Station Access Log-sum of the utility of every mode calculated station access model		Log-sum of the utility of every mode calculated railway station access model
	Variance Ratio	Similarity of a certain route to other routes

Congestion Index

Where

$$CI_m = \sum_j \left(B_{mj} \cdot \left(\frac{CR_{mj}}{100} \right)^2 \right)$$

 CI_m = Congestion index of route m B_{mj} = Boarding Time of link j, route m CR_{mj} = Congestion rate of link j, route m

Main Model: Railway Route Assignment

Model	Variables

	Variables 划	Detail
	Fare (Yen)	Total route fare from origin station to destination station
0	Boarding Time (Min)	Total boarding time from origin station to destination station
G	Transfer Time, Horizontally (Min)	Time spent on walking horizontally while transferring the train
8	Tran <mark>sfer Time</mark> , Vertically (Min)	Time spent on moving vertically (elevator, escalator, etc.) while transferring the train
6	Waiting Time (Min)	Total time waiting for train boarding, including the first ride. Assume as a half of headway.
$\left\{ \right.$	Congestion Index	Calculated from travel time and congestion rate, see below
	Station Access	Log-sum of the utility of every mode calculated railway station access model
	Variance Ratio	Similarity of a certain route to other routes

Congestion Index

Where

 CI_m = Congestion index of route m B_{mj} = Boarding Time of link j, route m CR_{mj} = Congestion rate of link j, route m

Main Model: Railway Route Assignment

	Work				School		Private				Business	
	-64		65+		All Age		-64		65+		All Age	
	parameter	t-value										
Fare	-0.00355	-3.89	-0.00325	-3.09	-0.00415	-3.94	-0.00365	-3.56	-0.00447	-2.84	-0.00314	-2.74
Boarding Time	-0.151	-7.35	-0.0974	-5.62	-0.0800	-5.40	-0.0912	-5.22	-0.102	-3.13	-0.136	-7.35
Horizontal Transfer	-0.242	-6.54	-0.139	-4.22	-0.133	-3.51	-0.205	-3.94	-0.183	-2.60	-0.140	-2.79
Vertical Transfer	-0.313	-4.77	-0.329	-4.91	-0.137	-2.02	-0.221	-2.87	-0.261	-2.10	-0.376	-4.25
Waiting Time	-0.145	-4.24	-0.112	-3.63	-0.0784	-3.37	-0.105	-3.67	-0.120	-2.52	-0.132	-4.07
Congestion Index	-0.0122	-2.50	-0.0335	-5.42	-0.0101	-1.88	-					
Station Access	0.883	12.7	0.991	10.6	0.908	12.6	0.752	11.4	0.975	4.98	0.888	12.2
Variance Ratio	0.128	2.88	0.022	1.16	0.019	1.08	0.033	1.15	0.253	1.36	0.035	1.32
Adjusted R ²	0.440		0.389		0.433		0.353		0.331		0.490	
Boarding VOT	42.6		30.0		19.3		25.0		22.7		43.2	
Horizon Transfer VOT	68.3		42.7		32.0		56.2		40.9		44.5	
Vertical Transfer VOT	88.1		101		33.1		60.5		58.4		120	
Waiting VOT	40.7		34.3		18.9		28.8		26.9		41.9	
Ν	1,000		500		500		500		500		500	

Calculate the share of mode used for railway station access, from walk, bicycle, car, bus

 $P_{i} = \frac{exp(V_{i})}{\sum_{i=1}^{n} exp(V_{i})}$ $V_{i} = \sum_{k} (\theta_{k} \cdot X_{ik})$

Where P_i = Probability of selecting mode i V_i = Utility of selecting mode i n = Number of transport mode, here = 4 (walk, bicycle, car, bus) θ_k = kth utility parameter X_{ik} = kth utility variable of mode i

Model Variables

Variables	Detail					
Non-Motorized Travel Time (Minute)	(WALK, BICYCLE ONLY) WALK: walking time between origin or destination to station BICYCLE: cycling time between origin or destination to station, parking time included					
Motorized Travel Time (Minute)	(CAR, BUS ONLY) CAR: travel time between origin or destination to station, parking time included BUS: travel time between origin or destination to station, access/egress time to bus stop included					
Travel Cost (Yen)	Total cost spent between origin or destination to station					
Elevation Difference	(WALK, BICYCLE ONLY) Elevation difference between origin or destination to station. Reference from 50m mesh elevation data					
LN(Frequency)	(BUS ONLY) Business, Private: Ln of frequency per day Work, School: Ln of peak hour frequency, calculated from frequency per day x 0.16					
ASC	Alternative specific constant for each mode. CAR as a reference.					

Station Access Model

Calculate the share of mode used for railway station access, from walk, bicycle, car, bus

 $P_{i} = \frac{exp(V_{i})}{\sum_{i=1}^{n} exp(V_{i})}$ $V_{i} = \sum_{k} (\theta_{k} \cdot X_{ik})$

Where

 P_i = Probability of selecting mode i V_i = Utility of selecting mode i

n = Number of transport mode, here = 4 (walk, bicycle, car, bus)

 $heta_k$ = kth utility parameter X_{ik} = kth utility variable of mode i For station access/feeder

mode policy evaluation

Model Variables

Variables 🥑	9 Detail
Non-Motorized Travel Time (Minute)	(WALK, BICYCLE ONLY) WALK: walking time between origin or destination to station BICYCLE: cycling time between origin or destination to station, parking time included
Motorized Travel Time (Minute)	(CAR, BUS ONLY) CAR: travel time between origin or destination to station, parking time included BUS: travel time between origin or destination to station, access/egress time to bus stop included
Travel Cost (Yen)	Total cost spent between origin or destination to station
Elevation Difference	(WALK, BICYCLE ONLY) Elevation difference between origin or destination to station. Reference from 50m mesh elevation data
LN(Frequency)	(BUS ONLY) Business, Private: Ln of frequency per day Work, School: Ln of peak hour frequency, calculated from frequency per day x 0.16
ASC	Alternative specific constant for each mode. CAR as a reference.

Transport Hub (Airport, HSR Station) Access Model

- Domestic Passenger Airport Access Model
- International Passenger Airport Access Model
- HSR & Intercity Railway Station Access Model
- 1. Production Model
- Technically, no production model. Use the passenger data from airport survey or intercity railway survey for generation and attraction
- 2. Distribution Model
- Apply only growth rate model for OD distribution

- 3. Modal Split Model
- Multinomial Logit Model, same as Main Model
- Some new variables, including
 - Reliability index (for airport and road)
 - Airport or station specific dummy
- Route Assignment Model
- Multinomial Logit Model (not Probit)
- Variables are simplified version of the main model
 - No congestion index, no station access
 - Introduce some line specific dummies

Reliability Index $RI_i = \alpha \cdot CI_i + \beta_E D_{Ei} + \beta_F D_{Fi} + \beta_T D_{Ti} + \gamma$

Where

 RI_i = Reliability index of route i CI_i = Congestion index of route i, defined by

average travel time/free flow travel time

E = Expressway *F* = Four lanes or more road

T= Two lanes road

 D_i = Distance of each types of road in route i α, β, γ = Estimated parameters

Transport Hub (Airport, HSR Station) Access Model

Domestic Passenger Airport Access Model

Technically, no production model. Use

the passenger data from airport survey

Apply only growth rate model for OD

or intercity railway survey for get

- International Passenger Airport Access Model
- HSR & Intercity Railway Station Access Model
- 3. Modal Split Model
- Multinomial Logit Model, same as Main Model
- Some new variables, including
 - Reliability index (for airport and road)
 - Airport or station specific dummy

Fine tune model for the demand from Airport, HSR

station (demand from outer zones and tourist)

- ain
- No congestion index, no station access
- Introduce some line specific dummies

Reliability Index

Distribution Model

Production Model

and attraction

distribution

۲

2.

•

$$RI_i = \alpha \cdot CI_i + \beta_E D_{Ei} + \beta_F D_{Fi} + \beta_T D_{Ti} + \gamma$$

Where

 RI_i = Reliability index of route i

 CI_i = Congestion index of route i, defined by

average travel time/free flow travel time

E = Expressway

F = Four lanes or more road

T = Two lanes road

 D_i = Distance of each types of road in route i

lpha , eta , γ = Estimated parameters

Why Railway Demand Forecast Model is Needed in BMA?

Some expected policy evaluations in railway planning

(based on the discussion in M-MAP2 Blueprint)

- To alleviate traffic congestion in the center
- To strengthen overall railway network n BMR
- To improve accessibility to stations
- To provide value added mass transit services
- To enhance accessibility to global gateways

These policies cannot be evaluated by the previous e-BUM (in 2019 TDS)

A new Railway Demand Forecast Model is required for railway policy evaluation