PART 1

แบบจำลองการคาดการณ์ผู่โดยสารระบบราง (Rail passenger demand forecasting models)
ในประเทศญี่ปุ่น
กิจกรรมถ่ายทอดความรู้ ครั้งที่ $1 / 2564$
โครงการเพื่อพัฒนาแบบจำลองการคาดการณ์ความต้องการเดินทางด้วยระบบรางและการพัฒนาโครงข่ายระบบขนส่ง มวลชนทางรางในเขตกรุงเทพและปริมณฑล (พื้นที่ต่อเนื่อง) ระยะที่ 2 (M-MAP 2)

ณ ห้อง Infinity Ballroom 2 ชั้น G Pullman Bangkok King Power

The Project for Enhancing Capacity of Formulation of the Second Mass Rapid Transit Master Plan in Bangkok Metropolitan Region (M-MAP2)

Why the Demand Forecast Model Specialized for Railways is Needed? Examples from Japanese Railway Master Plan

JICA Expert Team

Table of Contents

- Tokyo Metropolitan Area (TMA) demand forecast model
- Roles of demand forecast model
- Why the railway demand forecast model is needed?
- Development History
- Demand forecast and policy evaluation
- Demand forecast and investment priority evaluation
- Detail information on demand forecast model in CTPP No. 198
jica TMA Railway Demand Forecast Model
- Developed by The Council of Transport Policy for TMA Railway Master Plan

An independent council under MLIT
Secretariat: Railway Bureau and Kanto Regional Bureau (MLIT)

- Railway Master Plan Model for Tokyo Metropolitan Area

Tokyo, Kanagawa, Saitama, Chiba, and a part of Ibaraki Pref.
Study area approx. 50km radius from CBD
Population of 30 Million

- 4-Step Model
- Latest Model Developed in 2016

Which we will cover this model today

The Project for Enhancing Capacity of Formulation of the Second Mass Rapid Transit Master Plan in Bangkok Metropolitan Region (M-MAP2)

Roles of Demand Forecast Model

In CTPP No. 18 (2000 TMA Railway Master Plan), the demand forecast result was utilized in several aspect, such as

- New line investment priority setting

Demand forecast result will be one of the criteria in multi-criteria analysis for priority setting

- Public policy responsive analysis

Five major policies, namely, congestion reduction, travel time saving, reinforcing urban structures, airports \& HSR stations access improvement, and universal design \& seamless transfer, were analyzed based on the indices obtained from the demand forecast model.

- Subsidy Analysis

Analysis on who (local govt, central govt, other public organizations, etc.) benefit from the railway service, and how much the benefit it is. This will help to determine which stakeholder should share the investment cost based on their expected benefit from railway service.
jicA Why the Railway Demand Forecast Model is Needed?

1. To evaluate the railway policies and goals
2. To provide a precise passenger demand forecast, specifically for railway passenger

- below items are examples of issue taken into considered in Tokyo model
- Zone with high competition between each railway lines should be divided in more detail, while zone with low railway demand could be aggregated.
- Railway station access model is introduced
- Reconstruction with the difference of passenger demand in each railway section between estimated value and the actual data within 10% difference.

3. To provide a state-of-the-art model based on the latest result from academic researches
jica Development History

	Analysis	Features of Model
CUTP No.15 (1972)	Demand forecasting and other related Target year 1985	" First introduction of 4-Step Model analyses
CTPP No.7 (1985)		
Target year 2000 analysis zones		

CTPP No.18: Evaluation by Policy

Goal 1. Alleviate in-train congestion

In-train congestion can be evaluated with average congestion ratio \& length of over-congested sections.

Year 1996
(actual situation before the master plan)

Congestion Ratio

Year 2016
(estimation after the implementation)

Goal 2. Shorten travel time / Goal 3. Reinforce urban structures \& functions

Travel time \& no. of transfer among CBDs and periphery's cores can describe strength of urban structures \& functions. (In case of BMA: Bangkok CBD - Bang Khae - Min Buri - Nonthaburi - Rangsit - Samut Prakan)

Impact on Urban Structure (TO-BE)

Goal 5

Promote universal design \& seamless service

Change in number of transfers

Goal 4．Improve access to airports \＆High Speed Rail stations

Access time and no．of transfers to Suvarnabhumi，Don Mueang and Bang Sue from key locations．

Access Improvement－Haneda Airport ？年（推計）

Reach in 60 min（1996）

Reach in 60 min（2016 est．）

Access Improvement－Narita Airport ${ }^{\text {ミ（推計）})}$

Goal 5
Promote universal design \＆ seamless service

Change in number of transfers

Proposals were evaluated consistently with the evaluation criteria, thus providing accountability \& objectivity.

C 0 0 0 0 0 0 0 0		$\begin{aligned} & \frac{\sqrt{0}}{\bar{O}} \\ & \underset{\sim}{\sim} \\ & \hline \end{aligned}$		0 0 0 0 0.0 0 0 0 0		mplis Socio 	ment of conom	licy mpac	Is		Fina 2 0 0 0 0 1 10 0	al Viab 0 0 0 0 0 0 0 n 0 0 0 0 0	ity $\overline{3}$ 0 0 3 0 0 0 0 0	
1	A	3.6	319	Good	Avg.	Good	Good	Avg.	XX	6.7	5.4	0\%	628	Operating body
2	B	8.5	95	Poor	Poor	Poor	Poor	Poor	XX	1.0	2.4	80\%	3,236	Willingness of LGU
3	C	11.4	91	Avg.	Poor	Good	Poor	Poor	XX	2.3	2.7	50\%	2,282	Financing capacity
4	D	6.6	75	Avg.	Poor	Good	Avg.	Poor	XX	3.0	1.7	80\%	1,351	Etc.
5	E	12.3	111	Good	Good	Avg.	Avg.	Avg.	XX	2.8	2.6	60\%	8,363	
... 96														

Main Model: Structure

2,843 analysis zones +64 external zones $=2,907$ zones

Trip Purpose

Trip Purpose	
1) Home to Work	6) Work - Business
2) Home to School	7) Work to Home
3) Home to Private	8) School to Home
4) Non Home-Based Private	9) Private to Home
5) Home to Business	10) Business to Home
Time Period	
Age Group (for Home to Work*)	
AM Peak (purpose 1-2)	Off Peak (purpose 3-6)
PM Peak (purpose 7-10) Production Model Every 5 years, until 85+ Distribution Model Female: $15-34,35-64,65-74, ~ 75+$ Male: -64, 65-74, 75+ Modal Split Model $-64,65+$ Route Assignment Model	

*For other trip purposes, see slide 6

Major Data Input

- 2010 National Census (for Production)
- 2008 Person-Trip Survey (for Distribution and Modal Split)
- 2010 Metropolitan Transport Census (for Route Assignment)
- Other railway passenger statistics for reconstruction and calibration

2,843 analysis zones +64 external zones $=2,907$ zones

Trip Purpose

Trip Purpose	
1) Home to Work	6) Work - Business
2) Home to School	7) Work to Home
3) Home to Private	8) School to Home
4) Non Home-Based Private	9) Private to Home
5) Home to Business	10) Business to Home

Time Period

AM Peak (purpose 1-2)	Off Peak (purpose 3-6)	PM Peak (purpose 7-10)

Age Group (for Home to Work*)	
Production Model	Every 5 years, until 85+
Distribution Model	Female: 15-34, 35-64, 65-74, 75+ Male: $-64,65-74,75+$
Modal Split Model	$-64,65+$
Route Assignment Model	

Major Data Input

- 2010 National Census (for Production)
- 2008 Person-Trip Survey (for Distribution and Modal Split)
- 2010 Metropolitan Transport Census (for Route Assignment)
- Other railway passenger statistics for reconstruction and calibration

Main Model: Production

Trip Rate Method

$G_{i p a}=\alpha_{i p a} \cdot X_{i p a}$
$\alpha_{i p a}=\frac{g_{i p a}}{x_{i p a}}$

Where
$G_{i p}$: Future trip generated from zone i for trip purpose p, age group a
$X_{i p}$: Future population index from zone i for trip purpose p, age group a
$\alpha_{i p}$: Trip generation rate from zone i for trip purpose p , age group a
$g_{i p}$: Current trip generated from zone i for trip purpose p , age group a
$x_{i p}$: Current population index from zone i for trip purpose p , age group a
Same applies with attraction, but with
different population index

Main Model: Production

Population Index and Trip Rate by Trip Purpose

Trip Purpose	Generation		Attraction	
	Population Index	Trip Rate	Population Index	Trip Rate
1) Home to Work	Number of workers	1.000	Number of employment	1.000
2) Home to School	Number of students	1.000	Number of school seats	1.000
3) Home to Private	Number of people who stay at home during the daytime*	0.716	Daytime population	0.265
4) Non Home-Based Private	Daytime population	0.237	Daytime population	0.237
5) Home to Business	Number of workers	0.075	Number of employment	0.075
6) Work - Business	Number of employment	0.194	Number of employment	0.194
7) Work to Home	Number of employment	0.465	Number of workers	0.466
8) School to Home	Number of school seats	0.713	Number of students	0.715
9) Private to Home	Daytime population	0.312	Nighttime population	0.312
10) Business to Home	Number of employment	0.076	Number of workers	0.076

[^0]
Main Model: Distribution

Two steps in Distribution Model

1. Gravity Model

- Used as initial OD trip only on a specific on area, trip purpose, origin, or destination with expected land development

2. Growth Rate Model

- After distribute by Gravity Model on the specific ODs, apply growth rate for the rest based on future population data
- Most of the urban areas are already developed in TMA, so assume no large scale development between OD
- Finally, balance with Fratar Method until total generation = total attraction

Main Model: Distribution

Two steps in Distribution Model

1. Gravity Model

- Used as initial OD trip only on a specific on area, trip purpose, origin, or destination with expected land development

2. Growth Rate Model

- After distribute by Gravity Model on the spedfic ODs, apply growth rate for the rest based on future population data
- Most of the urban areas are already developed in TMA, so assume no large scale development between OD
- Finally, balance with Fratar Method until total generation = total attraction

Fine tune for policy evaluation related to land development

Main Model: Distribution

Gravity Model

$T_{i j p a}$
$=\left(\kappa+\delta_{0} \cdot d_{0}\right) \cdot G_{i p a}^{\alpha} \cdot A_{j p a}^{\beta} \cdot c_{i j}^{\left(\gamma+\delta_{0} \cdot d_{0}+\sum_{k} \delta_{k} \cdot d_{k}\right)}$ Where
$T_{i j}$: Future no. of trip from zone i travel to zone j
A_{j} : Future Trip attracted to zone j
$c_{i j}$: Generalized cost of trip from zone i to j
δ_{0}, d_{0} : CBD, sub-CBD parameter and dummy
δ_{k}, d_{k} : ${ }^{\text {th }}$ distance parameter and dummy
$\alpha, \beta, \gamma, \kappa$: other gravity model parameters

Note: CBD, sub-CBD and distance dummy may be excluded from some trip purpose and age group

Model Variables

Variables	Detail
Generation	Trip generated, calculated from Generation Model (10,000 person)
Attraction	Trip attracted, calculated from Attraction Model (10,000 person)
Generalized Cost	OD generalized cost calculated from Modal Split Model
<10 km Dummy	1 if road distance between OD is in dummy range, 0 otherwise
10-20 km Dummy	
20-30 km Dummy	
30-40 km Dummy	
40-50 km Dummy	
50-60 km Dummy	
CBD, sub-CBD Dummy	1 if O or D zones (or both) are defined as CBD or subCBD, 0 otherwise

Main Model: Distribution

Growth Rate Model

$T_{i j}=t_{i j} \cdot \frac{G_{i}}{g_{i}} \cdot \frac{A_{i}}{a_{i}} \cdot \frac{1}{2}\left(\frac{g_{i}}{\sum_{j} t_{i j} \cdot \frac{A_{j}}{a_{j}}}+\frac{a_{j}}{\sum_{i} t_{i j} \cdot \frac{G_{i}}{g_{i}}}\right)$
Where
$t_{i j}$: Current no. of trip from zone i travel to zone j
g_{i} : Current Trip generated from zone i
a_{j} : Current Trip attracted to zone j

	1	\ldots	j	\ldots	J	
l	$T_{l l}$	\ldots	\ldots	\ldots	$T_{l J}$	G_{l}
\vdots	$:$	\ddots			\vdots	\vdots
i	\vdots		$T_{i j}$		\vdots	\vdots
$:$	\vdots			\ddots	\vdots	\vdots
J	$T_{J I}$	\ldots	\ldots	\ldots	$T_{J J}$	G_{J}
	A_{1}	\ldots	\ldots	\ldots	A_{J}	$\sum_{i=1}^{J} G_{i}=\sum_{j=1}^{J} A_{j}$

Note: use $T_{i j}$ from Gravity Model if already specified by Gravity Model

Main Model: Modal Split

Two steps in Modal Split Model

(Nest structure, but not Nested Logit Model)

1. Motorized - Non-Motorized Split

- Fixed the non-motorized share (walk and bicycle) based on the distance, age and trip purpose

2. Motorized Modal Split

- Split motorized mode by rail, bus and car
- Multinomial Logit Model
- For rail choice, consider log sum of station access model as one of the variables

Main Model: Modal Split

Motorized - Non-Motorized Split

Red: 64 y.o. or less
Blue: 65-74 y.o. (or 65+ if there is no green line)
Green: 75 y.o. or more
Y axis: share of non-motorized mode
X axis: distance (km)
Composed based on the result of 2008 Person-Trip Survey

Main Model: Modal Split

Motorized Modal Split

$$
\begin{aligned}
& P_{i}=\frac{\exp \left(V_{i}\right)}{\sum_{i=1}^{n} \exp \left(V_{i}\right)} \\
& V_{i}=\sum_{k}\left(\theta_{k} \cdot X_{i k}\right)
\end{aligned}
$$

Where
$P_{i}=$ Probability of selecting mode i
$V_{i}=$ Utility of selecting mode i
$n=$ Number of transport mode, here $=3$ (rail, bus, car)
$\theta_{k}=k^{\text {th }}$ utility parameter
$X_{i k}=\mathrm{k}^{\text {th }} \mathrm{utility}$ variable of mode i

Model Variables

Variables	Detail
Travel Cost (Yen)	RAIL: rail fare BUS: bus fare CAR: VOC (fuel, maintenance) + toll fee
Travel Time (Minute)	RAIL: boarding + transfer + waiting time BUS: boarding + waiting + access/egress to bus stop time CAR: driving + parking (both O\&D) time
Vehicle Ownership (Veh/Person)	(CAR ONLY) Vehicle Ownership per capita (20-84 y.o.)
CBD Dummy	(CAR ONLY) 1 for destination zone in the municipality with car share less than 20\%, 0 otherwise
Station Access	(RAIL ONLY) Log-sum of the utility of every mode calculated railway station access model, calculated as sum of log-sum of access and egress
Short Trip Dummy	(CAR ONLY) 1 for OD with distance less than 5km, 0 otherwise
ASC	Alternative specific constant for each mode. Bus as a reference.

Main Model: Modal Split

For railway fare policy evaluation

Motorized Modal Split
$P_{i}=\frac{\exp \left(V_{i}\right)}{\sum_{i=1}^{n} \exp \left(V_{i}\right)}$
$V_{i}=\sum_{k}\left(\theta_{k} \cdot X_{i k}\right)$

Where
$P_{i}=$ Probability of selecting mode i
$V_{i}=$ Utility of selecting mode i
$n=$ Number of transport mode, here $=3$ (rail, bus, car)
$\theta_{k}=k^{\text {th }}$ utility parameter
$X_{i k}=$ k $^{\text {th }}$ utility variable of mode i

Model Variables

Variables	Detail
Travel Cost (Yen)	RAIL: rail fare BUS: bus fare CAR: VOC (fuel, maintenance) + toll fee
Travel Time (Minute)	RAIL: boarding + transfer + waiting time BUS: boarding + waiting + access/egress to bus stop time CAR: driving + parking (both O\&D) time
Vehicle Ownership (Veh/Person)	(CAR ONLY) Vehicle Ownership per capita (20-84 y.o.)
CBD Dummy	(CAR ONLY) 1 for destination zone in the municipality with car share less than 20\%. 0 otherwise
Station Access	(RAIL ONLY) Log-sum of the utility of every mode calculated railway station access model, calculated as sum of log-sum of access and egress
Snort Imp	(CAR ONLY) 1 for OD with distance less than 5km, 0 otherwise
Dummy	Alternative specific constant for each mode. Bus as a reference.
ASC	

jica Main Model: Modal Split

Estimates		Home to Work, Work to Home				$\mathrm{HtS}, \mathrm{StH}$	
		-64		65+		All age	
		parameter	t-value	parameter	t-value	parameter	t-value
Travel Cost (yen)	All	-0.00123	-10.4	-0.000940	-7.34	-0.00561	-13.1
Travel Time (min)	All	-0.0482	-18.2	-0.0389	-13.8	-0.0102	-2.13
Vehicle Ownership	CAR	1.13	7.23	2.45	12.9	0.972	3.35
CBD Dummy	CAR	-1.72	-21.3	-0.847	-8.57	-0.571	-2.05
Station Access	RAIL	0.446	33.6	0.504	24.0	0.148	4.93
Short Trip Dummy	CAR	0.665	6.13	0.530	4.33	2.18	6.87
ASC	BUS	-0.773	-7.65	0.248	1.98	4.28	14.0
	RAIL	2.82	21.8	2.73	17.0	4.80	14.8
Adjusted R^{2}		0.740		0.545		0.975	
Hit Ratio		90.3		79.9		93.8	
Travel Time VOT (yen/min)		39.3		41.3		1.81	
N		9,763		3,689		2,786	

Main Model: Railway Route Assignment

Multinomial Probit Model

$$
\Sigma=\sigma_{0}^{2}\left(\begin{array}{cccc}
\eta L_{1}+1 & \eta L_{12} & \cdots & \eta L_{1 M} \\
\eta L_{12} & \eta L_{2}+1 & \cdots & \eta L_{2 M} \\
\vdots & \vdots & \ddots & \vdots \\
\eta L_{1 M} & \eta L_{2 M} & \cdots & \eta L_{M}+1
\end{array}\right)
$$

Main Model: Railway Route Assignment

Model Variables

Variables	Detail
Fare (Yen)	Total route fare from origin station to destination station
Boarding Time (Min)	Total boarding time from origin station to destination station
Transfer Time, Horizontally (Min)	Time spent on walking horizontally while transferring the train
Transfer Time, Vertically (Min)	Time spent on moving vertically (elevator, escalator, etc.) while transferring the train
Waiting Time (Min)	Total time waiting for train boarding, including the firstride.Assume as a half of headwav.
Congestion Index	Calculated from travel time and congestion rate, see below
Station Access	Log-sum of the utility of every mode calculated railway station access model
Variance Ratio	Similarity of a certain route to other routes
Congestion Index	
$C I_{m}=\sum_{j}\left(B B_{m j} \cdot\left(\frac{C R_{m j}}{100}\right)^{2}\right) \quad$$C I_{m}=$ Congestion index of route m $B_{m j}=$ Boarding Time of link j, route m $C R_{m j}=$ Congestion rate of link j, route m	

jica Main Model: Railway Route Assignment

	Work				School All Age		Private				Business All Age	
	-64		65+				-64		65+			
	parameter	t-value	parameter	t-value	parameter	t-value	parameter	t-value	parameter	t-value	parameter	t-value
Fare	-0.00355	-3.89	-0.00325	-3.09	-0.00415	-3.94	-0.00365	-3.56	-0.00447	-2.84	-0.00314	-2.74
Boarding Time	-0.151	-7.35	-0.0974	-5.62	-0.0800	-5.40	-0.0912	-5.22	-0.102	-3.13	-0.136	-7.35
Horizontal Transfer	-0.242	-6.54	-0.139	-4.22	-0.133	-3.51	-0.205	-3.94	-0.183	-2.60	-0.140	-2.79
Vertical Transfer	-0.313	-4.77	-0.329	-4.91	-0.137	-2.02	-0.221	-2.87	-0.261	-2.10	-0.376	-4.25
Waiting Time	-0.145	-4.24	-0.112	-3.63	-0.0784	-3.37	-0.105	-3.67	-0.120	-2.52	-0.132	-4.07
Congestion Index	-0.0122	-2.50	-0.0335	-5.42	-0.0101	-1.88						
Station Access	0.883	12.7	0.991	10.6	0.908	12.6	0.752	11.4	0.975	4.98	0.888	12.2
Variance Ratio	0.128	2.88	0.022	1.16	0.019	1.08	0.033	1.15	0.253	1.36	0.035	1.32
Adjusted R ${ }^{2}$	0.440		0.389		0.433		0.353		0.331		0.490	
Boarding VOT	42.6		30.0		19.3		25.0		22.7		43.2	
Horizon Transfer VOT	68.3		42.7		32.0		56.2		40.9		44.5	
Vertical Transfer VOT	88.1		101		33.1		60.5		58.4		120	
Waiting VOT	40.7		34.3		18.9		28.8		26.9		41.9	
N	1,000		500		500		500		500		500	

jicA Station Access Model

Calculate the share of mode used for railway station access, from walk, bicycle, car, bus
$P_{i}=\frac{\exp \left(V_{i}\right)}{\sum_{i=1}^{n} \exp \left(V_{i}\right)}$
$V_{i}=\sum_{k}\left(\theta_{k} \cdot X_{i k}\right)$
Where
$P_{i}=$ Probability of selecting mode i
$V_{i}=$ Utility of selecting mode i
$n=$ Number of transport mode, here $=4$ (walk, bicycle, car, bus) $\theta_{k}=k^{\text {th }}$ utility parameter
$X_{i k}=k^{\text {th }}$ utility variable of mode i

Model Variables

Variables	Detail
Non-Motorized Travel Time (Minute)	(WALK, BICYCLE ONLY) WALK: walking time between origin or destination to station BICYCLE: cycling time between origin or destination to station, parking time included
Motorized Travel Time (Minute)	(CAR, BUS ONLY) CAR: travel time between origin or destination to station, parking time included BUS: travel time between origin or destination to station, access/egress time to bus stop included
Travel Cost (Yen)	Total cost spent between origin or destination to station
Elevation Difference	(WALK, BICYCLE ONLY) Elevation difference between origin or destination to station. Reference from 50m mesh elevation data
LN(Frequency)	(BUS ONLY) Business, Private: Ln of frequency per day Work, School: Ln of peak hour frequency, calculated from frequency per day $\times 0.16$
ASC	Alternative specific constant for each mode. CAR as a reference.

Station Access Model

Calculate the share of mode used for railway station access, from walk, bicycle, car, bus
$P_{i}=\frac{\exp \left(V_{i}\right)}{\sum_{i=1}^{n} \exp \left(V_{i}\right)}$
$V_{i}=\sum_{k}\left(\theta_{k} \cdot X_{i k}\right)$
Where
$P_{i}=$ Probability of selecting mode i
$V_{i}=$ Utility of selecting mode i
$\boldsymbol{n}=$ Number of transport mode, here $=4$ (walk, bicycle, car, bus)
$\theta_{\boldsymbol{k}}=k^{\text {th }}$ utility parameter
$X_{i k}=k^{\text {th }}$ utility variable of mode i

For station access/feeder mode policy evaluation

Model Variables

Variables	Detail
Non-Motorized Travel Time (Minute)	(WALK, BICYCLE ONLY) WALK: walking time between origin or destination to station BICYCLE: cycling time between origin or destination to station, parking time included
Motorized Travel	(CAR, BUS ONLY) CAR: travel time between origin or destination to station, parking time included
Time (Minute)	BUS: travel time between origin or destination to station, access/egress time to bus stop included
Travel Cost (Yen)	Total cost spent between origin or destination to station
Elevation (WALK, BICYCLE ONLY) Elevation difference between origin or destination to station. Reference from 50m mesh elevation data LN(Frequency) (BUS ONLY) Business, Private: Ln of frequency per day Work, School: Ln of peak hour frequency, calculated from frequency per day x 0.16 ASC Alternative specific constant for each mode. CAR as a reference.	

jica Transport Hub (Airport, HSR Station) Access Model

- Domestic Passenger Airport Access Model
- International Passenger Airport Access Model
- HSR \& Intercity Railway Station Access Model

1. Production Model

- Technically, no production model. Use the passenger data from airport survey or intercity railway survey for generation and attraction

2. Distribution Model

- Apply only growth rate model for OD distribution

3. Modal Split Model

- Multinomial Logit Model, same as Main Model
- Some new variables, including
- Reliability index (for airport and road)
- Airport or station specific dummy

4. Route Assignment Model

- Multinomial Logit Model (not Probit)
- Variables are simplified version of the main model
- No congestion index, no station access
- Introduce some line specific dummies

Reliability Index
$R I_{i}=\alpha \cdot C I_{i}+\beta_{E} D_{E i}+\beta_{F} D_{F i}+\beta_{T} D_{T i}+\gamma$

Where

$R I_{i}=$ Reliability index of route i	$E=$ Expressway	$D_{i}=$ Distance of each types of
$C I_{i}=$ Congestion index of route i , defined by	$F=$ Four lanes or more road	road in route i
average travel time/free flow travel time	$T=$ Two lanes road	$\alpha, \beta, \gamma=$ Estimated parameters

Transport Hub (Airport, HSR Station) Access Model

- Domestic Passenger Airport Access Model
- International Passenger Airport Access Model
- HSR \& Intercity Railway Station Access Model

3. Modal Split Model

- Multinomial Logit Model, same as Main Model
- Some new variables, including
- Reliability index (for airport and road)
- Airport or station specific dummy

1. Production Model

- Technically, no production model. Use the passenger data from airport survey or intercity railway survey for ge and attraction

2. Distribution Model

- Apply only growth rate model for OD distribution

Fine tune model for the demand from Airport, HSR station (demand from outer zones and tourist)

- No congestion index, no station access
- Introduce some line specific dummies

Reliability Index

$$
R I_{i}=\alpha \cdot C I_{i}+\beta_{E} D_{E i}+\beta_{F} D_{F i}+\beta_{T} D_{T i}+\gamma
$$

Where
$R I_{i}=$
$C I_{i}=$ Congestion index of route i , defined by
average travel time/free flow travel time
$E=$ Expressway
$F=$ Four lanes or more road
$D_{i}=$ Distance of each types of road in route i
$\alpha, \beta, \gamma=$ Estimated parameters
jicA Why Railway Demand Forecast Model is Needed in BMA?

Some expected policy evaluations in railway planning
(based on the discussion in M-MAP2 Blueprint)

- To alleviate traffic congestion in the center
- To strengthen overall railway network n BMR
- To improve accessibility to stations
- To provide value added mass transit services
- To enhance accessibility to global gateways

These policies cannot be evaluated by the previous e-BUM (in 2019 TDS)

A new Railway Demand Forecast Model is required for railway policy evaluation

[^0]: *equals to $=$ Nighttime pop. - No. of workers - No. of employment + No. of people WFH

